
J .  Fluid Me&. (1971), wol. 49, part 3, pp.  481-488 

Printed in &eat Britain 
48 1 

A note on theoretical acoustical sources in motion 

By E. W. GRAHAM AND B. B. GRAHAM 
Shaw Island, Washington 98286, U.S.A. 

(Received 12 March 1971) 

The mathematical representation of acoustical sources in motion relative to the 
surrounding fluid is discussed. It is observed that several types of moving sources 
exist, and that it is sometimes necessary to  choose the proper type. One of these 
sources currently appears to  be more physically realistic than the others. 

Introduction 
The acoustical point source a t  rest in an infinite homogeneous fluid is very 

familiar. It requires no comment here except to state that it resembles an 
expanding and Contracting spherical balloon. 

The acoustical point source in motion relative to  the immediately surrounding 
fluid is not so generally understood, since several types exist. This can readily be 
seen as follows. The time derivative of the velocity potential of a moving point 
source satisfies the wave equation. Relabelled as a potential this designates 
another type of moving point source. Thus infinitely many types exist. (The same 
operation performed on a stationary source is trivial, yielding the original 
potential.) 

The distinction between different types of moving sources may be unimportant 
if the source is ultimately excluded from the flow and replaced by the velocities 
and pressures of its near field. I n  this way an inner boundary condition ca.n be 
properly satisfied, and a consistent fa,r field obtained. However, there are cases 
where it is useful and even essential to  know the exact nature of the source. 

I n  what follows we will discuss specifically simple harmonic sources in un- 
accelerated motion, though the ideas may carry over to  more general cases. 

Conventional moving sources 
The conventional moving source (see, for example, Garrick 1957) can be repre- 

sented as an array of stationary sources along the line of simulated motion. These 
sources are turned on and off in sequence, which gives the illusion of motion 
though no source actually moves. The fluid which is introduced at  one point along 
the line of motion is left a t  rest with respect to  the surrounding fluid at that point. 
It is the failure to transport this introduced fluid at the simulated velocity of the 
source that prevents the conventional moving source from corresponding to an 
expanding and contracting balloon in motion. 

Assume that such a source is placed in an idealized circular cylindrical jet of 
31 F L M  49 



48 2 E .  W .  Graham and B. B.  Graham 

uniform velocity and infinite length,? and held stationary relative to the air 
outside the jet (see figure 1). Then as the frequency approaches zero the far-field 
mean-square pressures approach the form shown in figure 1. 

Source at  rest relative 
to the external air 

(moving relative to jet air). 

____) Uniform 
Source circular 

Mach no = 0.5 
Frequency -+ 0 

Conventional 

Modified moving 

FIGURE 1. Far-field mean-square pressures for sources in a jet 
(low frequency limit). 

Modified moving sourcest 
In attempting to construct the conventional moving source theoretically, the 

authors observed (and presumably were not the first to do so) that other types 
of moving sources could be constructed. From periodic distributions of source 
strength on a plane, point sources were created by a Fourier integral process (see 
appendix). The periodic distributions were chosen to conform to standing waves 
in a co-ordinate system moving at  the chosen source velocity. When these standing 

t This type of problem was considered earlier by Gottlieb (1959) and by Moretti & 
Slutsky (1959). 

$ See also Graham (1968) and Graham & Graham (1969). 
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waves were waves of fluid particle velocity normal to the plane, the conventional 
moving source was obtained. However when the standing waves were waves of 
fluid particle displacement normal to the plane, which seems physically more 
significant, the modified source appeared. 

The standing waves of fluid particle displacement suggest that the modified 
moving source carries its own fluid with it, unlike the conventional source. This 
idea is apparently verified by the following type of analysis. Consider a simple 
source drifting with the fluid in a uniform jet of infinite length. Since this aource 
is stationary with respect to the immediately surrounding fluid its nature is quite 
unambiguous. Let the jet thickness approach zero (or the frequency approach 
zero), then it can be shown mathematically that the modified moving source 
results. Such a source is carrying its fluid with it, and so behaving as an expanding 
and contracting balloon? moving through the ambient air. 

Assume that this modified moving source is placed in an idealized circular 
cylindrical jet of uniform velocity and infinite length, and held stationary relative 
to the air outside the jet (see figure 1). Then as the frequency approaches zero the 
far-field mean-square pressures (see figure 1) are independent of angle, and the 
behaviour is that of a simple stationary source in a homogeneous medium of 
infinite extent. 

Comparison of theory with experiment 
Since the far-field mean-square pressures are widely different for the conven- 

tional and the modified moving sources, an experimentally created source (see 
Atvars et al. 1965, for example) must be identified as to type. Is it one or the other 
of these, or a combination of them, or possibly a third type 1 Until this ambiguity 
is resolved, no useful comparison of theory with experiment can be made. In  
particular, statements in the literature that refraction theory for infinitely long 
jets exaggerates refraction effects by orders of magnitude cannot be checked by 
comparison of theory with experiment.$ 

Other types of moving sources 
If a moving source has a given velocity potential, its pressure field is propor- 

tional to a time derivative of the potential field in a co-ordinate system fixed in 
the ambient fluid. The pressure field of the conventional moving source corre- 
sponds to the potential field of the modified source. The moving source used by 
Lighthill (1962) apparently is a third type. Its pressure field corresponds to the 
potential field of the conventional source, and it could presumably be created 
from standing waves of fluid particle acceleration. A source moving with the 
local fluid in a jet does not radiate like the source used by Lighthill in the low 
frequency limit (as sometimes assumed), but radiates as the modified moving 
source. 

t More precisely a balloon of zero mean diameter. 
A referee informs us that these statements have other support. However such support 

is irrelevant to the subject of this paper and will not be discussed here. 
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Appendix 
Preliminary development 

The linearized wave equation governing the propagation of sound waves in a 
homogeneous fluid is 

where V2 is the Laplacian operator, q5 is a velocity potential, c is the speed of 
sound and t is time. I n  rectangular co-ordinates x, y, z 

v24 = (11C2)4tt, ( 1 )  

q5xx + q5UV + 4 z z  - P I C 2 )  4tt = 0 (2) 

and the velocity components u, v ,  w in the x, y, z directions are equal to $,, $U, $z, 

respectively. 
To permit the construction of singulitrities in the x, y plane the fluid is divided 

into an upper and a lower region separated by the x, y plane. I n  each region an 
equation similar t o  (2) must be satisfied. On the x, y plane the pressure in the 
upper fluid must match the pressure in the lower fluid a t  every point. The 
Continuity equation is not sa,tisfied across the x, ?J plane in general, and this 
failure to satisfy continuity corresponds to the presence of sources in the x, y plane. 
Let y U ( q  y) be the vertical displacement of the lower boundary of the upper fluid 
and rl(x,  y) be the vertical displacement of the upper boundary of the lower fluid. 
Then (rl( - rl) = A? indicates the presence of sources. More precisely the local 
stationary source strength per unit area on the x, y plane is [aAr/at],,,,, (i.e. 

Singularities such as a line source or point source are constructed by super- 
position of periodic source distributions in the x, y plane (i.e. the use of Fourier 
methods). For stationary sources the periodic source distributions needed corre- 
spond to  standing waves of aAr/at in the x co-ordinate system. Where line or 
point sources are moving with velocity V,  a new co-ordinate, < = x -xt, can be 
used. 

It is worth noting that in the < co-ordinate system standing waves of fluid 
surface acceleration, fluid surface velocity and fluid surface displacement amount 
to the same thing and are equivalent to  standing waves of fluid particle displace- 
ment. Standing waves of fluid particle velocity and fluid particle acceleration are 
entirely different from the above and different from each other. It is merely 
necessary to distinguish carefully between fluid particles and the surface con- 
taining them. 

One might expect the periodic source distributions required to  correspond to  
waves of (Art):  COmt (waves of the fluid surface) which are ‘standing’ waves in the 
uniformly moving co-ordinate system. Such a source has the conceptual advan- 
tage that the fluid introduced travels with the source and is kept separate from 
the surrounding fluid. This is consistent (within small perturbation restrictions) 
with the picture of an expanding and contracting balloon in uniform motion. 
However, this does not correspond to the conventional moving source, but to a 
modified moving source. 

The conventional moving source is constructed from waves of  AT^)^ const (i.e. 
waves of particle velocity at z = 0) which are standing waves in the uniformly 

a t  z = 0). 
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moving co-ordinates. This source introduces fluid which is then left behind, and 
later removes different fluid particles from the surrounding medium. This is not 
consistent with the simple balloon picture but is mathematically simpler and is 
generally used. 

Solutions of (2) are found by separation of variables and correspond to plane 
waves (or combinations of them) except where there is exponential variation 
with z. Only those plane wave solutions corresponding to outwardly moving 
waves (waves moving up in the upper region and down in the lower region) are 
needed t o  construct a source. Inwardly moving waves produce an energy sink 
which is not desired. Among the exponential solutions only those decreasing 
outwa,rdly need be retained. 

Construction of conventional and modified moving sources 
A point source is to  be constructed on the x axis moving with velocity V,  less than 
c in the positive x direction. Since there is symmetry about the x, y plane the 
pressure condition is satisfied automatically and only the upper fluid need be 
considered. For this region, separation of variables and choice of up-moving 
waves gives a solution of the wave equation as 

# = B C O S ( ~ ~ ~ ) C O S  [ k , ( x - V , t ) - w t + ~ ( ( ~ ~ ’ + k , M ) ~ -  k2,-kg}i] 

+ c cos (k , y )  cos [k,(x - V, t )  + wt - z{(w’ - I%, M ) 2  - k2,- k g q ,  (3) 

where (w’ ? k, M)2 > (k2, + ki) and w’ = w/c ,  M = V,/c. k,, k,are wave-numbers and 
w is the frequency. 
6 = x - Et is a distance measured in the x direction but in the moving co- 

ordinate system. Referring t o  the moving co-ordinates it appears that  (k,c - w t )  
indicates a wave moving in the positive 6 direction, while (k,<+wt) corresponds 
to a wave moving in the opposite direction. It is the superposition of such waves 
that produces a standing wave in the f; co-ordinate. 

The rate of displacement of the lower boundary of the upper fluid region is yt. 
By symmetry ATt = 27,. For the conventional moving source 7, = (8y/at),,,,,. 
For the modified moving source Tt = (i37/8t), and the terms in braces { }* in 
the following equations must be included. These terms are omitted for the con- 
ventional source. 

(w‘:;lM]* 
ATt = - 2B{ (w’ + k, M ) ,  - k2, - k i y  cos (k, y ) sin (k, f ;  - wt)  

I n  order that  Ay, be a standing wave in the 6 co-ordinate the two waves moving in 
opposite directions must have the same amplitude; hence 

c { ( W ’ f k , M p - k ; - k ; } *  ( W ‘ - k , M )  * 
B = { (W’-k lM)2-k; -k; }*  { I  ( w ’ + k , M )  * 

( 5 )  

a,, k2) (w‘+k,M}* If for convenience B = 
((w’ + k, M ) ,  - k2, - ki}*’ 
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then (7) 

and for (w’ f k , M ) 2  > (k:+k;)  (condition satisfied for both signs) 

A(k1, k2) cos [k ,  < - wt + x{(w’ + k, M)’ - k2, - ki}*] cos ( k , ~ )  {w‘ + k, M}” 
{(w’ + k, M)’ - k2, - ki}$ f$=  

A (k1, k,) cos [k, + wt - x{(w‘  - k, L W ) ~  - k2, - ki}*] cos (k ,y )  {o’ - k,  M)” 
{(w’ - k, M ) ,  - k2, - k:)& . (8) + 

Similarly it can be shown that when (k2, + hi)  > (w’ & k, N)2 

A(k , ,  k , ) s i n ( k , < - ~ t ) e x p [ - x { k 2 , + k ~ - ( w ‘ + k , M ) ~ } 3 ] c o s ( k , y ) { w ’ + k , f l . I ) *  
f$= {k2, + k2, - (w’ + k, M),}& 

- A(k, ,  k,)sin ( k , [ + w t ) e x p [  - z {k;+  k2,- ( w ’ -  k,M)2)4]cos ( k , y ) { d - k 1 M } *  
(k2, + ki - (0)’ - k, M)’},t 

(9) 

When neither condition is satisfied for both signs, Q is composed of one term from 
(8) and one term from (9) chosen in the appropriate manner. 

It is now necessary to determine A(k,,  k,) so that Ar t  has the form of a &function 
a t  < = 0, y = 0 (i.e. Art  is proportional to  the product of a &function in < times a 
S-function in y). 

Replacing B and C in (4) from (6) and (7) gives for (w’ & k, nil), > (k2, + ki)  

Art = 4A(k,, k,) cos ( k 2 y )  cos ( k , [ )  sin (wt )  {w’} * .  (10) 

By differentiating (8) and (9) with respect to  z and setting x = 0, it can be checked 
that the above expression for Art actually applies for all values of (&+ ki ) .  
Integrating over all k, and k,  gives 

Ar t  is the source strength and in order that  i t  should have the form of a S-function 
we require (Sommerfeld 1949, p. 298) 

A ( k l ,  k,) = v / ~ T ~ { w ’ } * ,  (12) 

where v is the source strength (i.e. the maximum volume of fluid introduced per 
unit time). 

A ( k , ,  k,) is now determined by (12) and Q can be determined by inserting the 
expression for A(k,, k,) in ( 8 )  and (9) andintegrating over the first quadrant of the 
k,, k ,  plane (zero to  infinity in k, and k,).  The proper expressions for Q must of 
course be chosen for the different regions in this quadrant, defined by 

(k: + ki) = (0‘ + k, M ) ,  and (k2, + k2,) = (w‘ - k 1 M ) 2 .  

I n  order to  simplify the presentation of the integrals it is convenient to extend 
the integration in k,  and k2 over the entire k,, k ,  plane ( - 03 to + co in k, and k,).  
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Then, using the complex form, 

where 92 denotes 'real part of'. 
This is the velocity potential for a point source of strength v on the x axis 

moving a t  velociby V,  = M c  in the positive x direction. The term in braces, 
{(w' + k,M)/w'}*,  appears only for the modified source. 

I n  cylindrical co-ordinates the moving point source can be constructed by 
superimposing cylindrical sta.nding waves along a cylinder parallel to  the x (or 6)  
direction. If the source strength is chosen as a &-function in E a ring source is 
formed. The radius of the ring is then allowed to  approach zero, keeping constant 
the total source volume emitted, and the expression for the moving point source 
in cylindrical co-ordinates is obtained as 

Again, the term in braces appears only for the modified source. Here r = (y2 + z2)*, 
k is the wave-number, and Hi1) denotes the Hankel function of the first kind. 

Evuluution of integrals in the far jield 

The integrals can be evaluated in the far field by standard methods such as the 
saddle-point method or the method of stationary phase. This is tedious but  
straight-forward, and we merely give the results. 

where $1 = Mach number ( M  < l),  

p ' 2  = 1 -M2, 

R = {/?'2((y2 + 22) + ["k 
Without the term {[1+ (MiJR)]//?'2)* this corresponds to  the expression given by 
Garrick (1957) for a subsonic moving source of conventional type. If M -+ 0 the 
two types of moving sources merge to  become the simple stationary source since 
R then becomes a true radius. 

It is interesting to place the source in a jet so that i t  is stationary relative to  the 
ambient air outside the jet. (Such a situation might be checked experimentally 
(see Atvars et al. 1965) if the experimental source-type were known and com- 
parable.) To accomplish this theoretically we go back to the integral form of the 
source, (14) in cylindrical co-ordinates, and introduce reflected waves within the 
jet so that for each wave-number the perturbation pressures and displacements 
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on either side of the jet boundary can be equated at the boundary. This is a 
standard procedure, and subsequent evaluation of far field pressures by saddle- 
point or stationary phase methods also is standard. However both of these 
operations are tedious and lengthy. In this note we have presented only the low 
frequency limit results shown in figure 1.  
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